на главную страницу

    Заметки по философии логики. Статья 0

L30a7  Логика свойств и логика объёмов

   Но: пример пересечения элементов:  есть родитель с множеством свойств А и есть родитель с множеством свойств В. Тогда их ребенок обладает свойствами А и В. Вообще здесь - элемент (объект), обладающий множеством свойств. Пересечение  элементов множеств дает суммирование их свойств и порождает новый объект с суммой свойств исходных объектов. Когда речь идет о пересечении, то относительно элементов пересечения придерживаются двух точек зрения: во-первых, это простое отождествление пересекающихся элементов множеств, обладающих разными свойствами. (→2)
    Однако логика объектов приводит к тому, что начинают, вместо продолжающих сосуществовать элементов, входящих в пересечение  разных множеств,  рассматривать один элемент, обладающий суммой свойств двух множеств. С другой стороны, сосуществование  элементов пересечения двух множеств может рассматриваться как  формирующее новое множество, в котором разные элементы рассматриваются как образующие функциональное единство, реализующее функцию на основе суммы признаков элементов пересекающихся множеств. Это можно понимать так, что такие совмещенные элементы образуют организацию, выполняющую какую-то единую функцию. Такого рода организация  представляет собой переходную форму от независимых элементов к элементам, которые характеризуются суммой признаков независимых элементов.
    (
2→)
    Но это - частный случай, в котором суммируются свойства объектов в новом объекте. Очевидно, что это уже - не привычная логика объёмов, а логика свойств. И то, что в логике свойств выступает как суммирование свойств, в логике объёмов выступает как их пересечение, то есть суммированию логики свойств противостоит пересечение (умножение) в логике объёмов. Отсюда следует индуктивный вывод, что операции логики свойств и логики объёмов противоположны друг другу.
    Как можно связать логику свойств и логику объемов? Пусть даны множества А, В и их пересечение А∩В. Тогда можно сказать, что существует множество элементов (объектов) со свойствами А и есть множество объектов со свойствами В и, наконец, есть множество объектов С=А∩В с суммой этих свойств. (
3→)
    Очевидно, что операции логики объемов и логики свойств при всём их тождественном математическом содержании, должны как-то различаться различаться друг от друга с тем, чтобы мы знали, когда высказывания принадлежат логике свойств, и когда - логике объёмов. Для начала можно было бы взять самую простую из возможного вещь: операции логики свойств обозначать операциями логики объемов с их подчеркиванием. И этот же самый принцип можно распространить также и на множества, рассматриваемые со стороны их объёма или со стороны их признаков. Например, выражения АUВ и АUB в этом случае  обладают разными содержаниями. АUВ обозначает сумму элементов множеств А и В. Обозначение АUB обозначает сумму признаков элементов множеств А и В. А это означает не что иное, как то, что множество  А=В. Тем самым что мы получили? Введением свойств обеспечено определение отношения между множествами А и В.
    Допустим, что множества А и В частично пересекаются, именно А\В=В\А=АВ=1 (знак "\" соответствует операции вычитания, 1=-0, то есть единица равна отрицанию 0, где 0 говорит об отсутствии у множества элементов, что множество является пустым. Тогда 1 обозначает не пустое множество) Из отношения между множествами мы можем утверждать, что существуют элементы множества А, не являющиеся элементами В, существуют элементы множества В, не являющиеся элементами множества А, и существуют элементы множества А, которые являются также и элементами множества В. Последнее выражение очевидно неверно, если оно имеет ввиду логику объемов. А∩В=АUВ, А\В=А
U-В, В\А=ВU-А, то есть пересечение множеств А и В обладает суммой признаков А и В, разность А и В обладает суммой признаков А и -В, так как что представляет собой вычитание элементов множества В из их пересечения с множеством А? Это означает соответствующее изменение положения множества В относительно А, либо соответствующее уничтожение элементов В, пересекающихся с А. Но в обоих случаях эти элементы замещаются элементами -В.
    (
3→)
 
  Но при этом ни один объект из множества С не является объектом ни одного из множеств А и В, как и обратно, ни один из объектов А не является в то же самое объектом В и обратно, и ни один из них не является объектом С. То основание, по которому они могут сравниваться и в этом смысле отождествляться и различаться, это общность и различие признаков, которыми они обладают. Объекты А с С пересекаются относительно признаков А, и относительно этих признаков они могут отождествляться; объекты В с С пересекаются относительно признаков В, и они могут отождествляться относительно признаков В,  но объекты С не есть ни объекты А, ни объекты В,  хотя мы и можем записать, что А=С\В или В=С\А. Просто на элементах множества С совмещаются признаки множеств А и В

  (1
→)представленные на рис. 2с.